Motivic homotopy theory and calculation methods:

On “The special fiber of the motivic deformation of the stable
homotopy category is algebraic”

Qingrui Qu
SUSTECH

Nov 28, 2023

1/32



Table of Contents

@ Introduction to motivic homotopy theory
@ Algebraic cobordism theory
o Chow t-structure

© Algebraicity of cofiber module categories
@ Main theorems:The equivalences of stable infinity categories
@ Sketch of proof

e Method of computation on more stable homotopy groups
@ Miller square and comparison
@ Equivalence of spectral sequences
@ Motivic enrichment and computation strategy

2/32



Table of Contents

@ Introduction to motivic homotopy theory
@ Algebraic cobordism theory
o Chow t-structure

3/32



Algebraic cobordism theory

For a fixed prime p, Voevodsky constructed the mod-p motivic Eilenberg-Mac Lane
spectrum that represents the mod-p motivic cohomology. We denote it by HIF;”Ot. Its

value at a point is ﬂ*_,*HIF;’“’t = F[r], and 7 has bi-degree (0, —1).

We denote by 5” the motivic sphere spectrum. For the grading, we denote by S**
the suspension spectrum of the simplicial sphere S , and by S'! the suspension
spectrum of the multiplicative group G, = A\ {0}.

The class 7 can be lifted to a map between H]F;”Ot—completed motivic sphere spectra

71 §0-1 5 §0.0 that induces a non-zero map on mod-p motivic homology. We denote
by S"0/7 the cofiber of 7.

There is a Betti Realization functor Re from the motivic stable homotopy category over
C to the classical stable homotopy category. Re(S™") ~ S™" and Re(HF}'') ~ HF,,.
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Algebraic cobordism theory

Let MGL be the cellular motivic algebraic cobordism spectrum introduced by
Voevodsky.

We define N
MU™ .= MGL Ngo.o S*°.

The motivic homotopy groups are computed by Hu—Kriz-Ormsby and Dugger—Isaksen:

Tane (MUY = Zp[7][21, 22, - |, deg(T) = (0,—1) , def(z;) = (24, 1)

The spectrum MU™! /7 := 500 /7 Ago0 MU™" has motivic homotopy groups:

W*’*(MU'”LOt/T) - Z[)[‘/El‘/ JJQ‘/ o } — MUQP:(Ot/T
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Definition 2.1. A t-structure on a stable oco-category C is a pair of two full subcat-
egories Cxo and C¢o that are stable under equivalences, satisfying the following three
properties:

(1) for X€Csp and Y €X71C, we have [X,Y]c=0;

(2) there are inclusions XC5(CCsp and X7 1C<(CCxo;

(3) for any X €C, there exists a fiber sequence

X>0 —%X——)Xg_l,

with X>0 EC}O and X<,1€271C<0.
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t-exact and bounded

Definition 2.2. Let C and C’ be stable co-categories equipped with ¢-structures. We
say that an exact functor f:C—C’ is right t-ezact, if it carries Cxq to C5,. An exact
functor f:C—C" is left t-ezact, if it carries C<o to CL,. A functor is t-ezact if it is both
left and right t-exact.

Definition 2.4. Denote by C* and C~ the stable full subcategories spanned by left-
bounded and right-bounded objects in C, respectively:

Ct=JCwn and C =[]JCsp,
n>=0 n>=0
and by
ch:=Cc'nC”
the stable subcategory of bounded objects. We say that the t-structure is left-bounded,
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Heart of a t-structure

right-bounded or bounded, if the inclusion of C*, C~ or CP, respectively, in C, is an
equivalence.
The intersection
¥ = C;oﬂCgo

is called the heart of the t-structure.

The oo-category C¥ is always equivalent to (the nerve of) its homotopy category
hC®, which is an abelian category (see [41, Remark 1.2.1.12]). Following [41], we abuse
the notation by identifying C¥ with the abelian category hC.
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Chow—Novikov degree

Definition

For any motivic spectrum X, consider its bigraded motivic homotopy groups 7, X.
Here, s is the topological degree under the Betti realization, and w is the motivic
weight. The Chow—Novikov degree of an element in 7, X is defined as s — 2w. We
say that 7, ,, X is concentrated in Chow—Novikov degrees /, where / is a set of
integers, if all non-zero elements in 7, . X are concentrated in Chow—Novikov degrees
belonging to I.

For example, the homotopy groups of MU' /7 are concentrated in Chow—Novikov
degree zero, while the homotopy groups of M U/™°" are concentrated in non-negative
even Chow—Novikov degrees.

Taw(MU™Y) = Z[7][21, 22, -+ ], deg(r) = (0, 1), def(z;) = (24, 1)

W*’*(MU"”()IL//T) — Zp[l'l-/ To, - } Urnof/T
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Chow t-structure

o We define MU™"/7-Mod?,, as the stable full subcategory of MU™°! /7-Mod,.;,
spanned by objects whose homotopy groups are concentrated in bounded
Chow-Novikov degrees.

o Define MU™" /7-Mod"7°, MU™" /7-Mod";5;°, MU™" /7-Mod"), as the full

subcategories of MU™°" /- Mod(,g,] cell spanned by objects whose homotopy
groups are concentrated in non-negative, non-positive and zero Chow—Novikov
degrees, respectively.

@ Define @/T—M()d}jwm as the stable full subcategory of @/T—Modhmm spanned
by objects whose M U™°! -homology groups are concentrated in bounded Chow—
Novikov degrees.

o Define SO0 0 /7-Mod”” 50,0 0 /7-Mod”

subcategories of S00/7- Mod? .~ spanned by objects whose /U™°!-homology
groups are concentrated in non-negative, non-positive and zero Chow-Novikov
degrees respectively.

SOO/T Mod, as the full

hal m! har m! arm
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Main theorems 1

There is an equivalence of stable co-categories equipped with t-structures at each
prime p:
Db(BP,BP-Comod®) ~ S99 /7-Mod?,,. . (1)

between the bounded derived category of p-completed BP, BP-comodules that are
concentrated in even degrees, and the category of harmonic motivic left module
spectra over SUV /7, whose MGL-homology has bounded Chow-Novikov degree, with

morphisms the SV /7-linear map.

A

Here,S"Y /7 is a motivic E..-ring spectrum, which is also known as the cofiber of 7.
The motivic spectrum MGL is the algebraic cobordism spectrum.
A motivic left-module spectrum over S”Y /7 is harmonic, if it is S%’/7 -cellular and
the map to its M GL-completion induces an isomorphism on 7, ...
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Main theorems 2

THEOREM 1.11. (1) The full subcategories

MU™ /7-Mod?5"  and MU™"/7-Mod.’

cell cell

define a t-structure on MU™'/7-Mod?,,.
(2) The functor

Ty s MUY /7 -Mod | — MU, -Mod®"

cell

18 an equivalence.

(3) There exists an equivalence of stable co-categories
MU™"/r-Mod?,;, — D*(MU,-Mod*®),

that preserves the given t-structures and extends the functor m, . on the heart.
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Main theorems 3

THEOREM 1.13. (1) The full subcategories

SOﬁ/T-Modbé0 and SOW/T-Modb’go

harm harm

define a t-structure on S/OB/T—Modﬁarm.
(2) The functor

MU™9t: §90 /7 Mody,,, — MU, MU-Comod®”

harm

is an equivalence.

(3) There exists an equivalence of stable co-categories
$00/7-Mod?,.,, — D" (MU,MU-Comod®")

that preserves the given t-structures and extends the functor MUf‘jt on the heart.
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Lurie's theorem

PROPOSITION 2.12. Let C be a stable co-category with a given bounded t-structure.
Suppose that the following conditions hold:

(1) the abelian category A=hC® has enough injective objects;

(2) for any pair of objects X, Y €A, if Y is injective, then the abelian groups

[E_iX? Y]C

vanish for i>0.

Then, there exists an equivalence of stable co-categories
G:D’(A) —C

extending the inclusion N(A)~C% CC, and which preserves t-structures. Here, N(A) is
the nerve of the abelian category A and DY(A) is the bounded derived category of A.
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Uniersal coefficient SS thm

THEOREM 3.2. (Universal coefficient spectral sequence) For any
X, Y e MU™/7-Model,
there is a conditionally convergent spectral sequence

)ty it t—s,
E; w = EXti/[U"g’zt/T (Tr*’*X7 W*’*Y) — [E $ wX, Y}MUmot/T.

Moreover, if both . X and 7. .Y are concentrated in bounded Chow-Novikov degrees,

then the spectral sequence converges strongly and collapses at a finite page.

Proof: For degree reasons.
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Isomorphism between topological and algebraic Hom set

COROLLARY 3.3. Let

X eMU™/r Mod?2° and Y € MU™*/r- Mod®:S".

cell

The abelian group of homotopy classes of bi-degree (0,0) can be computed algebraically

by the isomorphism

[X7 Y]MUm"t/T — HomMUm"t*7*/T(7r*,*X7 ’/T*,*Y)

that is induced by applying T «.

Proof: For degree reasons.
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The equivalence on the heart

COROLLARY 3.4. The functor

cell

Ty MU /7 -Mod,, — MU /7-Mod’

is fully faithful. Here, the right-hand side is understood as a discrete oo-category.

As a consequence, Corollary 3.4 shows that MUmOt/T—ModSe“ is also a discrete

oo-category.
Proof. For n>0 and two objects X, YEMUmOt/T-MOd?eH, by Corollary 3.3, the edge

homomorphism

[E0X,Y] 2 Homypymot /1 (14, s 20X, 7, ,Y)

MUmot/T

is an isomorphism. When n>0, the bigraded module 7, .X™%X is concentrated in posi-
tive Chow—Novikov degree. So the right-hand side of the above isomorphism is concen-
trated in the case n=0. This shows that 7. . is fully faithful on MUmOt/T—MOd?eH. O
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The equivalence on the heart 2

To show the equivalence on the heart, we only need to show the essential surjectivity
of 7, .. We need to show that any object M & Z\/[U”’“”t/T—nwd0 can be realized as the

homotopy groups of an object in M/ U™ /7-mod4.

The free MU"“”/T module can be realized by wedge of spectra MU’”‘”/T For an

arbitrary M, we can plck a free resolution 0 <— M <« Fy + Fy < , and they can be
realized as 7y < Z; < ---. and we can construct a tower X; — XZ —> ... st
»o0Zi 1 — X; — X;.1 is a cofiber sequence and X := colim(X; — Xo — ---),

T s (X) = M.

Proposition

The functor
M MUmOt/T—MOd(ZH — MU&Ot/T-MOdO

is an equivalence of co-categories.
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The absolute Adams—Novikov SS

For the category 500 /7-Mod?, | the t-structure is defined in terms of MU™t-
homology. We therefore need a version of the motivic Adams—Novikov spectral sequence
that computes 500 /7T-linear maps.

Recall from Dugger-Isaksen [14, §8] or Hu-Kriz-Ormsby [28] the usual MU™*-based
motivic Adams—Novikov spectral sequence

* %k ok mot /0\0 mot A
EXtMUin.c;tMUmot (MU*y* S0, 7MU*,* Y):>7T*,*YMUm°t'

This spectral sequence is not what we need. We need a spectral sequence of the
form
Extyumenngumet/- (MULS' X, MURS'Y) = [X, Yyjymot]

500 /7
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Modified strategy

To show the equivalence on the heart, we only need to show the essential surjectivity
of MU,

Unlike the case for modules over MUiffit/T, we do not have free resolutions for
comodules over MUffitMUmot /7. We will instead use Landweber’s filtration theorem to
realize all comodules that are finitely presented, and then extend the result using filtered

colimits. In particular, all Smith-Toda complexes exist in 50.0 /7-Mod.
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Comparison of ASS and ANSS

The Adams spectral sequence and the Adams—Novikov spectral sequence are two of
the most effective methods of computing the homotopy groups of the p-completed
sphere spectrum of the form:

Ext$'(F),Fp) = ES' = SO
Extyp, pp(BP., BP,) = Ey' = S0

It is important to understand connections between them. A first connection is given by
the Thom reduction map p : BP — HT,, which is a ring spectra map and its behavior

on the coefficient ring is given by p.(v,) = 0 for all v, € BP,(pt) and induces a map
of spectral sequences:

Exty (Fy,F,) — Extyp pp(BP., BP,)

that preserves the (s, t)-degrees. However, a general homotopy class in 7.S" usually
have different Adams filtration and Adams-Novikov filtration. So this map is not very
useful for comparison of the Adams filtration and the Adams-Novikov filtration of a
surviving homotopy class, it only tells us the latter is less or equal to the former.
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algebraic Novikov SS and Cartan-Eilenberg SS

A fundamental connection is the Miller square. We have an algebraic Novikov spectral
sequence converging to the Adams-Novikov E?-page, and a Cartan-Eilenberg spectral
sequence converging to the Adams E”-page. It turns out the E”-pages of these two
algebraic spectral sequences are isomorphic.

The algebraic Novikov spectral equence comes the filtration of powers of the
augmentation ideal I = (p, vy, v2,---) C BP,

EN RN st
By = Erlgp pp);

(BP,/I,1¥/I"") = Ext}}, pp(BP., BP,)
The Cartan-Eilenberg spectral sequence is:
Eat};'(Fy, Butf)(F,, Fp)) = Eaty ™™ (F,,F,)
where P is a sub-Hopf algebra of A and Q = A ®p 5, We identify the E2-pages of

the Cartan-Eilenberg spectral sequence and the algebraic Novikov spectral sequence by
using the isomorphism of Hopf algebroids (BP. /I, BP.BP/I) = (F,, P).
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Miller square

So there is an isomorphism of F»> page:

o)

Ext'(Fy, Eut(Fy, Fy)) —» Eatsh

5 e (BPL /1T T

Exty’ (Fp, 1973 /1071

¢

N

Cartan—Eilenberg SS Algebraic Novikov SS

\
/

Ext% 7% (F,, F,) Extgp pp(BP., BP,)
\ /
Adams SS Adams—Novikov SS
\ i /
mp— S0,

25/32



Equivalence of spectral sequences

THEOREM 8.3. At each prime p, there is an isomorphism of tri-graded spectral se-
quences between the motivic Adams spectral sequence for @ /T, which converges to the
motivic homotopy groups of @/T, and the regraded algebraic Novikov spectral sequence,
which converges to the Adams—Novikov Es-page for the sphere spectrum.

The indexes are indicated in the following diagram:

EXt;E’TfBP/I(BP* /17 Ia75/1a78+1) i> Exta,Qw—s+a,w (Fp [T], ]Fp)

mot
A*,*

Algebraic Novikov SS Motivic Adams SS
5,2w = 300
EXtBP*BP(BP*; BP*) —_— 7T2w—s,w(50’0/7-)-

Here, A7'S" is the motivic mod-p dual Steenrod algebra.
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Miller square and motivic SS 1

Which spectral sequence can we put in between these two spectral sequences and have
a zig-zag diagram? Namely,

Bt (Fp, 172/ 1°7*H) 67— Exty (Fy, )

Algebraic Novikov SS Adams SS
Extyp pp(BPs, BP.) < ? » TS0,

The answer is in the motivic world! It has been given by the equivalence of spectral
sequences between Algebraic Novikov and motivic Adams of S0 /7.
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Miller square and motivic SS 2

Combine the motivic deformation and the naturality of the motivic Adams spectral
sequences and the equivalence of spectral sequences give us a zig-zag diagram.

Bxtipp, f (Fp, 1975 /10751) == Ext5Lhe ™2 (B, [r], F,) ¢—— Extare™ 2 (F,[r], Fylr]) — Ext§'**~*(F,,F,)

mot mot
Ame Ang

Algebraic Novikov SS Motivic Adams SS Motivic Adams SS Adams SS
, \M ~ — — Re ~
Extypp(BP,, BP,) ————— m.800/7 maS00— Be .G
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Computation strategy |

Isaksen, Wang and Xu extend the computation of classical and motivic stable stems
into a large range using the following steps:

o

Use a computer to carry out the entirely algebraic computation of the cohomology
of the C-motivic Steenrod algebra. These groups serve as the input to the
C-motivic Adams spectral sequence.

Use a computer to carry out the entirely algebraic computation of the algebraic
Novikov spectral sequence that converges to the cohomology of the Hopf
algebroid (BP,, BP.BP). This includes all differentials, and the multiplicative
structure of the cohomology of (BP,, BP,BP).

Identify the algebraic Novikov spectral sequence wi/th the motivic Adams spectral
sequence that computes the homotopy groups of S0/ . This includes an
identification of Extgé*BP(BP*, BP,) and W*,*go‘o/T.

Use the inclusion of the bottom cell and the projection to the top cell to pull back
and push forward Adams differentials for 30’0/7 to Adams differentials for the
motivic sphere %0
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Computation strategy Il

© Apply a variety of ad-hoc arguments to deduce additional Adams differentials for
the motivic sphere. The most important method involves shuffling Toda brackets.

@ Use a long exact sequence in homotopy groups to deduce hidden 7-extensions in
the motivic Adams spectral sequence for the sphere.

@ Invert 7 to obtain the classical Adams spectral sequence and the classical stable
homotopy groups.

30/32



Reference

[§ Gheorghe, Bogdan, Guozhen Wang, and Zhouli Xu. "The special fiber of the
motivic deformation of the stable homotopy category is algebraic." Acta
Mathematica 226.2 (2021): 319-407.

[ Burklund, Robert, and Zhouli Xu. "The Adams differentials on the classes hf."
arXiv preprint arXiv:2302.11869 (2023).

[d Dugger, Daniel, and Daniel C. Isaksen. "The motivic Adams spectral sequence."
Geometry & Topology 14.2 (2010): 967-1014.

[§ Hu, Po, Igor Kriz, and Kyle Ormsby. "Remarks on motivic homotopy theory over
algebraically closed fields." Journal of K-Theory 7.1 (2011): 55-89.

31/32



Thanks!



	Introduction to motivic homotopy theory
	Algebraic cobordism theory
	Chow t-structure

	Algebraicity of cofiber module categories
	Main theorems:The equivalences of stable infinity categories
	Sketch of proof

	Method of computation on more stable homotopy groups
	Miller square and comparison
	Equivalence of spectral sequences
	Motivic enrichment and computation strategy


