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Algebraic cobordism theory

For a fixed prime p, Voevodsky constructed the mod-p motivic Eilenberg-Mac Lane
spectrum that represents the mod-p motivic cohomology. We denote it by HFmot

p . Its
value at a point is π∗,∗HFmot

p = F[τ ], and τ has bi-degree (0,−1).

We denote by S0,0 the motivic sphere spectrum. For the grading, we denote by S1,0

the suspension spectrum of the simplicial sphere S1 , and by S1,1 the suspension
spectrum of the multiplicative group Gm = A1 \ {0}.
The class τ can be lifted to a map between HFmot

p -completed motivic sphere spectra
τ : Ŝ0,−1 → Ŝ0,0 that induces a non-zero map on mod-p motivic homology. We denote
by Ŝ0,0/τ the cofiber of τ .
There is a Betti Realization functor Re from the motivic stable homotopy category over
C to the classical stable homotopy category. Re(Sn,w) ≃ Sn,0 and Re(HFmot

p ) ≃ HFp.
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Algebraic cobordism theory

Let MGL be the cellular motivic algebraic cobordism spectrum introduced by
Voevodsky.
We define

MU mot := MGL ∧S0,0 Ŝ0,0.

The motivic homotopy groups are computed by Hu–Kriz-Ormsby and Dugger–Isaksen:

π∗,∗(MU mot) = Zp[τ ][x1, x2, · · · ] , deg(τ) = (0,−1) , def (xi) = (2i, i)

The spectrum MU mot/τ := Ŝ0,0/τ ∧Ŝ0,0 MU mot has motivic homotopy groups:

π∗,∗(MU mot/τ) = Zp[x1, x2, · · · ] = MU mot
∗,∗ /τ
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t-structure
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t-exact and bounded
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Heart of a t-structure
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Chow–Novikov degree

Definition
For any motivic spectrum X, consider its bigraded motivic homotopy groups πs,wX .
Here, s is the topological degree under the Betti realization, and w is the motivic
weight. The Chow–Novikov degree of an element in πs,wX is defined as s − 2w. We
say that πs,wX is concentrated in Chow–Novikov degrees I , where I is a set of
integers, if all non-zero elements in π∗,∗X are concentrated in Chow–Novikov degrees
belonging to I .

For example, the homotopy groups of MU mot/τ are concentrated in Chow–Novikov
degree zero, while the homotopy groups of MU mot are concentrated in non-negative
even Chow–Novikov degrees.

π∗,∗(MU mot) = Zp[τ ][x1, x2, · · · ] , deg(τ) = (0,−1) , def (xi) = (2i, i)

π∗,∗(MU mot/τ) = Zp[x1, x2, · · · ] = MU mot
∗,∗ /τ
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Chow t-structure

We define MU mot/τ -Modb
cell as the stable full subcategory of MU mot/τ -Modcell

spanned by objects whose homotopy groups are concentrated in bounded
Chow-Novikov degrees.
Define MU mot/τ -Modb,≥0

cell , MU mot/τ -Modb,≤0
cell , MU mot/τ -Modb,♡

cell as the full
subcategories of MU mot/τ -Modb

cell cell spanned by objects whose homotopy
groups are concentrated in non-negative, non-positive and zero Chow–Novikov
degrees, respectively.
Define Ŝ0,0/τ -Modb

harm as the stable full subcategory of Ŝ0,0/τ -Modharm spanned
by objects whose MU mot -homology groups are concentrated in bounded Chow–
Novikov degrees.
Define Ŝ0,0/τ -Modb,≥

harm , Ŝ0,0/τ -Modb,≤
harm , Ŝ0,0/τ -Modb,♡

harm as the full
subcategories of Ŝ0,0/τ -Modb

harm spanned by objects whose MU mot-homology
groups are concentrated in non-negative, non-positive and zero Chow-Novikov
degrees respectively.
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Main theorems 1

Theorem
There is an equivalence of stable ∞-categories equipped with t-structures at each
prime p:

Db(BP∗BP-Comodev) ≃ Ŝ0,0/τ -Modb
harm (1)

between the bounded derived category of p-completed BP∗BP-comodules that are
concentrated in even degrees, and the category of harmonic motivic left module
spectra over Ŝ0,0/τ , whose MGL-homology has bounded Chow-Novikov degree, with
morphisms the Ŝ0,0/τ -linear map.

Here,S0,0/τ is a motivic E∞-ring spectrum, which is also known as the cofiber of τ .
The motivic spectrum MGL is the algebraic cobordism spectrum.
A motivic left-module spectrum over S0,0/τ is harmonic, if it is S0,0/τ -cellular and
the map to its MGL-completion induces an isomorphism on π∗,∗.
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Main theorems 2
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Main theorems 3
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Lurie’s theorem
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Uniersal coefficient SS thm

Proof: For degree reasons.
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Isomorphism between topological and algebraic Hom set

Proof: For degree reasons.
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The equivalence on the heart
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The equivalence on the heart 2

To show the equivalence on the heart, we only need to show the essential surjectivity
of π∗,∗. We need to show that any object M ∈ MU mot

∗,∗ /τ -mod0 can be realized as the
homotopy groups of an object inMU mot/τ -modheart

cell .
The free MU mot

∗,∗ /τ -module can be realized by wedge of spectra MU mot/τ .For an
arbitrary M , we can pick a free resolution 0← M ← F0 ← F1 ← · · · , and they can be
realized as Z0 ← Z1 ← · · · . and we can construct a tower X1 → X2 → · · · s.t.
Σi,0Zi+1 → Xi → Xi+1 is a cofiber sequence and X := colim(X1 → X2 → · · · ),
π∗,∗(X) = M .

Proposition
The functor

π∗,∗ : MU mot/τ -Mod♡
cell → MU mot

∗,∗ /τ -Mod0

is an equivalence of ∞-categories.
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The absolute Adams–Novikov SS
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Modified strategy

21 / 32



Table of Contents

1 Introduction to motivic homotopy theory
Algebraic cobordism theory
Chow t-structure

2 Algebraicity of cofiber module categories
Main theorems:The equivalences of stable infinity categories
Sketch of proof

3 Method of computation on more stable homotopy groups
Miller square and comparison
Equivalence of spectral sequences
Motivic enrichment and computation strategy

22 / 32



Comparison of ASS and ANSS
The Adams spectral sequence and the Adams–Novikov spectral sequence are two of
the most effective methods of computing the homotopy groups of the p-completed
sphere spectrum of the form:

Exts,t
A (Fp,Fp) ∼= Es,t

2 ⇒ πt−sS0

Exts,t
BP∗BP(BP∗,BP∗) ∼= Es,t

2 ⇒ πt−sS0

It is important to understand connections between them. A first connection is given by
the Thom reduction map ρ : BP → HFp, which is a ring spectra map and its behavior
on the coefficient ring is given by ρ∗(vn) = 0 for all vn ∈ BP∗(pt) and induces a map
of spectral sequences:

Exts,t
A (Fp,Fp)→ Exts,t

BP∗BP(BP∗,BP∗)

that preserves the (s, t)-degrees. However, a general homotopy class in π∗S0 usually
have different Adams filtration and Adams-Novikov filtration. So this map is not very
useful for comparison of the Adams filtration and the Adams-Novikov filtration of a
surviving homotopy class, it only tells us the latter is less or equal to the former.
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algebraic Novikov SS and Cartan-Eilenberg SS
A fundamental connection is the Miller square. We have an algebraic Novikov spectral
sequence converging to the Adams-Novikov E2-page, and a Cartan-Eilenberg spectral
sequence converging to the Adams E2-page. It turns out the E2-pages of these two
algebraic spectral sequences are isomorphic.
The algebraic Novikov spectral equence comes the filtration of powers of the
augmentation ideal I = (p, v1, v2, · · · ) ⊂ BP∗,

Es,k,t
2
∼= Exts,t

BP∗BP/I (BP∗/I , I k/I k+1)⇒ Exts,t
BP∗BP(BP∗,BP∗)

The Cartan-Eilenberg spectral sequence is:

Exts,t
P (Fp,Extk

Q(Fp,Fp))⇒ Exts+k,t
A (Fp,Fp)

where P is a sub-Hopf algebra of A and Q = A⊗P F2, We identify the E2-pages of
the Cartan-Eilenberg spectral sequence and the algebraic Novikov spectral sequence by
using the isomorphism of Hopf algebroids (BP∗/I ,BP∗BP/I ) ∼= (Fp,P).
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Miller square
So there is an isomorphism of E2 page:

Exts,t
P (Fp,Extk

Q(Fp,Fp))
∼=−→ Exts,t′

BP∗BP/I (BP∗/I , I k/I k+1)
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Equivalence of spectral sequences
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Miller square and motivic SS 1
Which spectral sequence can we put in between these two spectral sequences and have
a zig-zag diagram? Namely,

The answer is in the motivic world! It has been given by the equivalence of spectral
sequences between Algebraic Novikov and motivic Adams of Ŝ0,0/τ .
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Miller square and motivic SS 2

Combine the motivic deformation and the naturality of the motivic Adams spectral
sequences and the equivalence of spectral sequences give us a zig-zag diagram.
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Computation strategy I
Isaksen, Wang and Xu extend the computation of classical and motivic stable stems
into a large range using the following steps:

1 Use a computer to carry out the entirely algebraic computation of the cohomology
of the C-motivic Steenrod algebra. These groups serve as the input to the
C-motivic Adams spectral sequence.

2 Use a computer to carry out the entirely algebraic computation of the algebraic
Novikov spectral sequence that converges to the cohomology of the Hopf
algebroid (BP∗,BP∗BP). This includes all differentials, and the multiplicative
structure of the cohomology of (BP∗,BP∗BP).

3 Identify the algebraic Novikov spectral sequence with the motivic Adams spectral
sequence that computes the homotopy groups of Ŝ0,0/τ . This includes an
identification of Exts,t

BP∗BP(BP∗,BP∗) and π∗,∗Ŝ0,0/τ .
4 Use the inclusion of the bottom cell and the projection to the top cell to pull back

and push forward Adams differentials for Ŝ0,0/τ to Adams differentials for the
motivic sphere Ŝ0,0.
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Computation strategy II
5 Apply a variety of ad-hoc arguments to deduce additional Adams differentials for

the motivic sphere. The most important method involves shuffling Toda brackets.
6 Use a long exact sequence in homotopy groups to deduce hidden τ -extensions in

the motivic Adams spectral sequence for the sphere.
7 Invert τ to obtain the classical Adams spectral sequence and the classical stable

homotopy groups.
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Thanks!
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